Accuracy of predictive equations for resting metabolic rate in Korean athletic and non-athletic adolescents

Athletes generally desire changes in body composition in order to enhance their athletic performance. Often, athletes will practice chronic energy restrictions to attain body composition changes, altering their energy needs. Prediction of resting metabolic rates (RMR) is important in helping to dete...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nutrition research and practice 2015, 9(4), , pp.370-378
Hauptverfasser: Kim, Jae-Hee, Kim, Myung-Hee, Kim, Gwi-Sun, Park, Ji-Sun, Kim, Eun-Kyung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Athletes generally desire changes in body composition in order to enhance their athletic performance. Often, athletes will practice chronic energy restrictions to attain body composition changes, altering their energy needs. Prediction of resting metabolic rates (RMR) is important in helping to determine an athlete's energy expenditure. This study compared measured RMR of athletic and non-athletic adolescents with predicted RMR from commonly used prediction equations to identify the most accurate equation applicable for adolescent athletes. A total of 50 athletes (mean age of 16.6 ± 1.0 years, 30 males and 20 females) and 50 non-athletes (mean age of 16.5 ± 0.5 years, 30 males and 20 females) were enrolled in the study. The RMR of subjects was measured using indirect calorimetry. The accuracy of 11 RMR prediction equations was evaluated for bias, Pearson's correlation coefficient, and Bland-Altman analysis. Until more accurate prediction equations are developed, our findings recommend using the formulas by Cunningham (-29.8 kcal/day, limits of agreement -318.7 and +259.1 kcal/day) and Park (-0.842 kcal/day, limits of agreement -198.9 and +196.9 kcal/day) for prediction of RMR when studying male adolescent athletes. Among the new prediction formulas reviewed, the formula included in the fat-free mass as a variable [RMR = 730.4 + 15 × fat-free mass] is paramount when examining athletes. The RMR prediction equation developed in this study is better in assessing the resting metabolic rate of Korean athletic adolescents.
ISSN:1976-1457
2005-6168
DOI:10.4162/nrp.2015.9.4.370