The RpoS Sigma Factor Negatively Regulates Production of IAA and Siderophore in a Biocontrol Rhizobacterium, Pseudomonas chlororaphis O6

The stationary-phase sigma factor, RpoS, influences the expression of factors important in survival of Pseudomonas chlororaphis O6 in the rhizosphere. A partial proteomic profile of a rpoS mutant in P. chlororaphis O6 was conducted to identify proteins under RpoS regulation. Five of 14 differentiall...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The plant pathology journal 2013, 29(3), , pp.323-329
Hauptverfasser: Oh, Sang A, Kim, Ji Soo, Park, Ju Yeon, Han, Song Hee, Dimkpa, Christian, Anderson, Anne J, Kim, Young Cheol
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The stationary-phase sigma factor, RpoS, influences the expression of factors important in survival of Pseudomonas chlororaphis O6 in the rhizosphere. A partial proteomic profile of a rpoS mutant in P. chlororaphis O6 was conducted to identify proteins under RpoS regulation. Five of 14 differentially regulated proteins had unknown roles. Changes in levels of proteins in P. chlororaphis O6 rpoS mutant were associated with iron metabolism, and protection against oxidative stress. The P. chlororaphis O6 rpoS mutant showed increased production of a pyoverdine-like siderophore, indole acetic acid, and altered isozyme patterns for peroxidase, catalase and superoxide dismutase. Consequently, sensitivity to hydrogen peroxide exposure increased in the P. chlororaphis O6 rpoS mutant, compared with the wild type. Taken together, RpoS exerted regulatory control over factors important for the habitat of P. chlororaphis O6 in soil and on root surfaces. The properties of several of the proteins in the RpoS regulon are currently unknown.
ISSN:1598-2254
2093-9280
DOI:10.5423/PPJ.NT.01.2013.0013