Footprint and minimum distance functions
Let $S$ be a polynomial ring over a field $K$, with a monomial order $\prec$, and let $I$ be an unmixed graded ideal of $S$. In this paper we study two functions associated to $I$: The minimum distance function $\delta_I$ and the footprint function ${\rm fp}_I$. It is shown that $\delta_I$ is positi...
Gespeichert in:
Veröffentlicht in: | Communications of the Korean Mathematical Society 2018, 33(1), , pp.85-101 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let $S$ be a polynomial ring over a field $K$, with a monomial order $\prec$, and let $I$ be an unmixed graded ideal of $S$. In this paper we study two functions associated to $I$: The minimum distance function $\delta_I$ and the footprint function ${\rm fp}_I$. It is shown that $\delta_I$ is positive and that ${\rm fp}_I$ is positive if the initial ideal of $I$ is unmixed. Then we show that if $I$ is radical and its associated primes are generated by linear forms, then $\delta_I$ is strictly decreasing until it reaches the asymptotic value $1$. If $I$ is the edge ideal of a Cohen--Macaulay bipartite graph, we show that $\delta_I(d)=1$ for $d$ greater than or equal to the regularity of $S/I$. For a graded ideal of dimension $\geq 1$, whose initial ideal is a complete intersection, we give an exact sharp lower bound for the corresponding minimum distance function. KCI Citation Count: 0 |
---|---|
ISSN: | 1225-1763 2234-3024 |
DOI: | 10.4134/CKMS.c170139 |