Partially abelian representations of knot groups

A knot complement admits a pseudo-hyperbolic structure by solving Thurston's gluing equations for an octahedral decomposition. It is known that a solution to these equations can be described in terms of region variables, also called $w$-variables. In this paper, we consider the case when pinche...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Taehan Suhakhoe hoebo 2018, 55(1), , pp.239-250
Hauptverfasser: 조윤희, 윤석범
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A knot complement admits a pseudo-hyperbolic structure by solving Thurston's gluing equations for an octahedral decomposition. It is known that a solution to these equations can be described in terms of region variables, also called $w$-variables. In this paper, we consider the case when pinched octahedra appear as a boundary parabolic solution in this decomposition. The $w$-solution with pinched octahedra induces a solution for a new knot obtained by changing the crossing or inserting a tangle at the pinched place. We discuss this phenomenon with corresponding holonomy representations and give some examples including ones obtained from connected sum. KCI Citation Count: 0
ISSN:1015-8634
2234-3016
DOI:10.4134/BKMS.b160996