Facile Nanostructured Composite Synthesis of Selenium and Molybdenum Chalcogenides/Carbon Nanotubes for Li‐Ion Batteries

For lithium‐ion batteries (LIBs), MoS2, which has conversion reaction pathways that can accommodate lithium ions during charge, is a very special inorganic material that has a two‐dimensional planar structure similar to graphite. For reliable performance of high‐energy LIBs, Se–molybdenum chalcogeni...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Korean Chemical Society 2017, 38(11), , pp.1347-1352
Hauptverfasser: Bose, Ranjith, Kim, Jaemin, Kim, Tae‐Hyun, Koh, Beomsoo, Go, Nakgyu, Mun, Junyoung, Yi, Sung Chul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For lithium‐ion batteries (LIBs), MoS2, which has conversion reaction pathways that can accommodate lithium ions during charge, is a very special inorganic material that has a two‐dimensional planar structure similar to graphite. For reliable performance of high‐energy LIBs, Se–molybdenum chalcogenides with sulfide and selenide (Se–MC) were prepared via the incorporation of a carbon nanotube (CNT) conducting matrix to solve the crucial limitations of MoS2, which include poor electronic conductivity and severe volume changes during cycling. For the preparation of Se–MC/CNT, a facile, one‐pot synthetic method using molybdic acid, selenium dioxide, and thioacetamide, which are the precursors for molybdenum, selenide, and sulfide, respectively, and CNT was developed. A detailed investigation of the surfaces and crystal structures of the prepared samples was conducted using transmission electron microscopy and X‐ray photoelectron spectroscopy analyses. Furthermore, LIBs containing the Se–MC/CNT exhibited a significantly extended cycle life and an improved rate capability that revealed the synergetic effect of the CNTs and selenide for controlling the morphology.
ISSN:1229-5949
0253-2964
1229-5949
DOI:10.1002/bkcs.11300