Roles of Dopamine D₂ Receptor Subregions in Interactions with β-Arrestin2
β-Arrestins are one of the protein families that interact with G protein-coupled receptors (GPCRs). The roles of β-arrestins are multifaceted, as they mediate different processes including receptor desensitization, endocytosis, and G protein-independent signaling. Thus, determining the GPCR regions...
Gespeichert in:
Veröffentlicht in: | Biomolecules & therapeutics 2016, 24(5), , pp.517-522 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | β-Arrestins are one of the protein families that interact with G protein-coupled receptors (GPCRs). The roles of β-arrestins are multifaceted, as they mediate different processes including receptor desensitization, endocytosis, and G protein-independent signaling. Thus, determining the GPCR regions involved in the interactions with β-arrestins would be a preliminary step in understanding the molecular mechanisms involved in the selective direction of each function. In the current study, we determined the roles of the N-terminus, intracellular loops, and C-terminal tail of a representative GPCR in the interaction with β-arrestin2. For this, we employed dopamine D₂ and D₃ receptors (D₂R and D₃R, respectively), since they display distinct agonist-induced interactions with β-arrestins. Our results showed that the second and third intracellular loops of D₂R are involved in the agonist-induced translocation of β-arrestins toward plasma membranes. In contrast, the N- and C-termini of D₂R exerted negative effects on the basal interaction with β-arrestins. |
---|---|
ISSN: | 1976-9148 2005-4483 |
DOI: | 10.4062/biomolther.2015.198 |