Roles of Dopamine D₂ Receptor Subregions in Interactions with β-Arrestin2

β-Arrestins are one of the protein families that interact with G protein-coupled receptors (GPCRs). The roles of β-arrestins are multifaceted, as they mediate different processes including receptor desensitization, endocytosis, and G protein-independent signaling. Thus, determining the GPCR regions...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomolecules & therapeutics 2016, 24(5), , pp.517-522
Hauptverfasser: Zhang, Xiaohan, Choi, Bo-Gil, Kim, Kyeong-Man
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:β-Arrestins are one of the protein families that interact with G protein-coupled receptors (GPCRs). The roles of β-arrestins are multifaceted, as they mediate different processes including receptor desensitization, endocytosis, and G protein-independent signaling. Thus, determining the GPCR regions involved in the interactions with β-arrestins would be a preliminary step in understanding the molecular mechanisms involved in the selective direction of each function. In the current study, we determined the roles of the N-terminus, intracellular loops, and C-terminal tail of a representative GPCR in the interaction with β-arrestin2. For this, we employed dopamine D₂ and D₃ receptors (D₂R and D₃R, respectively), since they display distinct agonist-induced interactions with β-arrestins. Our results showed that the second and third intracellular loops of D₂R are involved in the agonist-induced translocation of β-arrestins toward plasma membranes. In contrast, the N- and C-termini of D₂R exerted negative effects on the basal interaction with β-arrestins.
ISSN:1976-9148
2005-4483
DOI:10.4062/biomolther.2015.198