Recurrence relations for quotient moments of the exponential distribution by record valeus
In this paper we establish some recurrence relations satisfied by quotient moments of upper record values from the exponential distribution. Let fXn; n ¸ 1g be a sequence of independent and identically distributed random variables with a common continuous distribution function F(x) and probability d...
Gespeichert in:
Veröffentlicht in: | Honam mathematical journal 2004, 26(4), , pp.463-469 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | kor |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we establish some recurrence relations
satisfied by quotient moments of upper record values from the exponential
distribution. Let fXn; n ¸ 1g be a sequence of independent
and identically distributed random variables with a common
continuous distribution function F(x) and probability density
function(pdf) f(x): Let Yn = maxfX1;X2; ¢ ¢ ¢ ;Xng for n ¸ 1:
We say Xj is an upper record value of fXn; n ¸ 1g; if Yj >
Yj¡1; j > 1: The indices at which the upper record values occur are
given by the record times fu(n)g; n ¸ 1; where u(n) = minfjjj >
u(n ¡ 1);Xj > Xu(n¡1); n ¸ 2g and u(1) = 1. Suppose X 2
Exp(1). Then E Xr
u(m)
Xs+1
u(n) !=
1
s
E Xr
u(m)
Xs
u(n¡1)!¡
1
s
E Xr
u(m)
Xs
u(n) !and
E Xr+1
u(m)
Xs
u(n) !=
1
(r + 2)
E Xr+2
u(m)
Xs
u(n¡1)!¡
1
(r + 2)
E Xr+2
u(m¡1)
Xs
u(n¡1) ! KCI Citation Count: 2 |
---|---|
ISSN: | 1225-293X 2288-6176 |