Recurrence relations for quotient moments of the exponential distribution by record valeus

In this paper we establish some recurrence relations satisfied by quotient moments of upper record values from the exponential distribution. Let fXn; n ¸ 1g be a sequence of independent and identically distributed random variables with a common continuous distribution function F(x) and probability d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Honam mathematical journal 2004, 26(4), , pp.463-469
Hauptverfasser: Min-Young Lee, Se-Kyung Chang
Format: Artikel
Sprache:kor
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we establish some recurrence relations satisfied by quotient moments of upper record values from the exponential distribution. Let fXn; n ¸ 1g be a sequence of independent and identically distributed random variables with a common continuous distribution function F(x) and probability density function(pdf) f(x): Let Yn = maxfX1;X2; ¢ ¢ ¢ ;Xng for n ¸ 1: We say Xj is an upper record value of fXn; n ¸ 1g; if Yj > Yj¡1; j > 1: The indices at which the upper record values occur are given by the record times fu(n)g; n ¸ 1; where u(n) = minfjjj > u(n ¡ 1);Xj > Xu(n¡1); n ¸ 2g and u(1) = 1. Suppose X 2 Exp(1). Then E Xr u(m) Xs+1 u(n) != 1 s E Xr u(m) Xs u(n¡1)!¡ 1 s E Xr u(m) Xs u(n) !and E Xr+1 u(m) Xs u(n) != 1 (r + 2) E Xr+2 u(m) Xs u(n¡1)!¡ 1 (r + 2) E Xr+2 u(m¡1) Xs u(n¡1) ! KCI Citation Count: 2
ISSN:1225-293X
2288-6176