Flux Optimization Using Genetic Algorithms in Membrane Bioreactor

The behavior of submerged membrane bioreactor (SMBR) filtration systems utilizing rapid air backpulsing as a cleaning technique to remove reversible foulants was investigated using a genetic algorithm (GA). A customized genetic algorithm with suitable genetic operators was used to generate optimal t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of microbiology and biotechnology 2006, 16(6), , pp.863-869
Hauptverfasser: Kim, J.M. (Green Engineering Team, Environment and Energy Division, Cheonan, Republic of Korea), Park, C.H. (Green Engineering Team, Environment and Energy Division, Cheonan, Republic of Korea), Kim, S.W. (Korea University, Seoul, Republic of Korea), E-mail: kimsw@korea.ac.kr, Kim, S.Y. (Green Engineering Team, Environment and Energy Division, Cheonan, Republic of Korea), E-mail: sykim@kitech.re.kr
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The behavior of submerged membrane bioreactor (SMBR) filtration systems utilizing rapid air backpulsing as a cleaning technique to remove reversible foulants was investigated using a genetic algorithm (GA). A customized genetic algorithm with suitable genetic operators was used to generate optimal time profiles. From experiments utilizing short and long periods of forward and reverse filtration, various experimental process parameters were determined. The GA indicated that the optimal values for the net flux fell between 263-270 LMH when the forward filtration time (t∧f) was 30-37 s and the backward filtration time (t∧b) was 0.19-0.27 s.
ISSN:1017-7825