Neutralization of Human Papillomavirus by Specific Nanobodies Against Major Capsid Protein L1

The human papillomavirus (HPV) is the main cause of cervical cancer in developing countries. Rapid diagnosis and initiation of treatment of the HPV infection are critical. Various methods have been employed to reduce the immunogenicity of antibodies targeting HPV serotypes. Nanobodies are the smalle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of microbiology and biotechnology 2012, 22(5), , pp.721-728
Hauptverfasser: Minaeian, Sara, University of Isfahan, Isfahan, Iran, Rahbarizadeh, Fatemeh, Tarbiat Modares University, Tehran, Iran, Zarkesh-Esfahani, Sayyed Hamid, University of Isfahan, Isfahan, Iran, Ahmadvand, Davoud, Tehran University of Medical Science, Tehran, Iran, Broom, Oliver Jay, KIPA-Krahbichler Intellectual Property Advisor AB, Helsingborg, Sweden
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The human papillomavirus (HPV) is the main cause of cervical cancer in developing countries. Rapid diagnosis and initiation of treatment of the HPV infection are critical. Various methods have been employed to reduce the immunogenicity of antibodies targeting HPV serotypes. Nanobodies are the smallest fragments of naturally occurring single-domain antibodies with their antigen-binding site compromised into a single domain. Nanobodies have remarkable properties such as high stability, solubility, and high homology to the human VH3 domain. In this study, a phagemid library was employed to enrich for nanobodies against the L1 protein of the human papilloma virus. Binding reactivity of the selected clones was evaluated using phage enzyme-linked immunosorbent assay (phage-ELISA). Finally, two nanobodies (sm5 and sm8) with the best reactivity against the Gardasil vaccine and the purified HPV-16 L1 protein were expressed and purified using a Ni+-NTA column. The accuracy of expression and purification of the nanobodies was confirmed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting assays. In vitro studies demonstrated that neutralization was achieved by the selected nanobodies. The ease of generation and unique features of these molecules make nanobodies promising molecules for the new generation of HPV diagnosis and therapy.
ISSN:1017-7825
1738-8872
DOI:10.4014/jmb.1112.12001