Identification of Novel Irreversible Inhibitors of UDP-N-Acetylglucosamine Enolpyruvyl Transferase (MurA) from Haemophilus influenzae

Uridinediphospho-N-acetylglucosamine enolpyruvyl transferase (MurA, E.C. 2.5.1.7) is an essential bacterial enzyme that catalyzes the first step of the cell wall biosynthetic pathway, which involves the transfer of an enolpyruvyl group from phosphoenolpyruvate to uridinediphospho-Nacetylglucosamine....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of microbiology and biotechnology 2013, 23(3), , pp.329-334
Hauptverfasser: Han, S.G., Kookmin University, Seoul, Republic of Korea, Lee, W.K., Kookmin University, Seoul, Republic of Korea, Jin, B.S., Kookmin University, Seoul, Republic of Korea, Lee, K.I, Lee, H.H., Kookmin University, Seoul, Republic of Korea, Yu, Y.G., Kookmin University, Seoul, Republic of Korea
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Uridinediphospho-N-acetylglucosamine enolpyruvyl transferase (MurA, E.C. 2.5.1.7) is an essential bacterial enzyme that catalyzes the first step of the cell wall biosynthetic pathway, which involves the transfer of an enolpyruvyl group from phosphoenolpyruvate to uridinediphospho-Nacetylglucosamine. In this study, novel inhibitors of Haemophilus influenzae MurA (Hi MurA) were identified using high-throughput screening of a chemical library from the Korea Chemical Bank. The identified compounds contain a quinoline moiety and have much lower effective inhibitory concentrations (IC50) than fosfomycin, a wellknown inhibitor of MurA. These inhibitors appear to covalently modify the sulfhydryl group of the active site cysteine (C117), since the C117D mutant Hi MurA was not inhibited by these compounds and excess dithiothreitol abolished their inhibitory activities. The increased mass value of Hi MurA after treatment with the identified inhibitor further confirmed that the active-site cysteine residue of Hi MurA is covalently modified by the inhibitor.
ISSN:1017-7825
1738-8872
DOI:10.4014/jmb.1210.10053