Development of Molecular Markers for Xanthomonas axonopodis Resistance in Soybean

A single recessive gene, rxp, controls the bacterial leaf pustule (BLP) resistance in soybean and in our previous article, it has been mapped on linkage group (LG) D2 of molecular genetic map of soybean. A total of 130 recombinant inbred lines (RILs) from a cross between BLP-resistant SS2-2 and BLP-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Korean journal of crop science 2004, 49(5), , pp.429-433
Hauptverfasser: Ki Seung Kim, Kyu Jung Van, Moon Young Kim, Suk Ha Lee
Format: Artikel
Sprache:kor
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A single recessive gene, rxp, controls the bacterial leaf pustule (BLP) resistance in soybean and in our previous article, it has been mapped on linkage group (LG) D2 of molecular genetic map of soybean. A total of 130 recombinant inbred lines (RILs) from a cross between BLP-resistant SS2-2 and BLP-susceptible Jangyeobkong were used to identify molecular markers linked to rxp. Fifteen simple sequence repeat (SSR) markers on LG D2 were screened to construct a genetic map of rxp locus. Only four SSR markers, Satt135, Satt372, Satt448, and Satt486, showed parental polymorphisms. Using these markers, genetic scaffold map was constructed covering 26.2cM. Based on the single analysis of variance, Satt372 among these four SSR markers was the most significantly associated with the resistance to BLP. To develop new amplified fragment length polymorphism (AFLP) marker linked to the resistance gene, bulked segregant analysis (BSA) was employed. Resistance and susceptible bulks were made by pooling equal amount of genomic DNAs from ten of each in the segregating population. A total of 192 primer combinations were used to identify specific bands to the resistance, selecting three putative AFLP markers. These AFLP markers produced the fragment present in SS2-2 and the resistant bulk, and not in Jangyeobkong and the susceptible bulk. Linkage analysis revealed that McctEact97 (P=0.0004,~;R2=14.67~%) was more significant than Satt372, previously reported as the most closely linked marker.
ISSN:0252-9777
2287-8432