Remote Monitoring with Hierarchical Network Architectures for Large-Scale Wind Power Farms

As wind power farm (WPF) installations continue to grow, monitoring and controlling large-scale WPFs presents new challenges. In this paper, a hierarchical network architecture is proposed in order to provide remote monitoring and control of large-scale WPFs. The network architecture consists of thr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electrical engineering & technology 2015, 10(3), , pp.1319-1327
Hauptverfasser: Ahmed, Mohamed A., Song, Minho, Pan, Jae-Kyung, Kim, Young-Chon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As wind power farm (WPF) installations continue to grow, monitoring and controlling large-scale WPFs presents new challenges. In this paper, a hierarchical network architecture is proposed in order to provide remote monitoring and control of large-scale WPFs. The network architecture consists of three levels, including the WPF comprised of wind turbines and meteorological towers, local control center (LCC) responsible for remote monitoring and control of wind turbines, and a central control center (CCC) that offers data collection and aggregation of many WPFs. Different scenarios are considered in order to evaluate the performance of the WPF communications network with its hierarchical architecture. The communications network within the WPF is regarded as the local area network (LAN) while the communication among the LCCs and the CCC happens through a wide area network (WAN). We develop a communications network model based on an OPNET modeler, and the network performance is evaluated with respect to the link bandwidth and the end-to-end delay measured for various applications. As a result, this work contributes to the design of communications networks for large-scale WPFs. KCI Citation Count: 0
ISSN:1975-0102
2093-7423
DOI:10.5370/JEET.2015.10.3.1319