Re-refining of used lubricant oil by solvent extraction using central composite design method

The primary aim of this study was to recover base oil from used oil using solvent extraction followed by the adsorption method. Many effective variables were examined within the solvent extraction method, including using different solvents, solvent/used oil, temperature and speed of blending. Centra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Korean journal of chemical engineering 2017, 34(9), 210, pp.2435-2444
Hauptverfasser: Daham, Ghassan Rokan, AbdulRazak, Adnan AbdulJabbar, Hamadi, Adel Sharif, Mohammed, Ayad Ahmed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The primary aim of this study was to recover base oil from used oil using solvent extraction followed by the adsorption method. Many effective variables were examined within the solvent extraction method, including using different solvents, solvent/used oil, temperature and speed of blending. Central composite design (CCD) was applied as the statistical method. Response surface methodology was then used to find the optimum conditions in the process of extraction: ratio of solvent/used oil 2.4 and 3.12 vol/vol, temperature=54 and 18 °C, and speed of mixing=569 and 739 rpm for 1-butanol and methyl ethyl ketone (MEK), respectively. Various flocculation agents were used with the solvent, such as Sodium hydroxide (NaOH), Potassium hydroxide (KOH) and Monoethylamine (MEA); they provided an increase in the separation efficiency. The best result was obtained when using 2 grams of MEA/kg solvent; this amount of MEA increases sludge removal from 12.6% to 14.7%. In the process of clay adsorption, the variables that were tested included the ratio of clay/extract oil, temperature and time of contact. The best conditions in the process of adsorption by activated bentonite were a ratio of clay/extract oil=15 wt/vol%, temperature=120 °C, and time of contact=150 minutes. The recovered base oil was analyzed by Fourier transform infrared spectroscopy (FTIR) and compared to Iraqi specifications of base oils. The recovered base oil specifications were analyzed, including, viscosity @100 °C 8.32, 9.22 cSt, pour point −17.35, −22.23 °C, flash point 210.12, 223.04 °C, total acid number (TAN) 0.25, nill, total base number (TBN) nill, nill, ash 0.031, 0.0019 wt% and color 3.0, 2.5 for two types of base oil recovered using MEK, 1-butanol with activated bentonite, respectively.
ISSN:0256-1115
1975-7220
DOI:10.1007/s11814-017-0139-5