Numerical investigation on composite porous layers in electroosmotic flow

Applying mechanical pressure on a solid boundary contact using a thin porous layer has been found to reduce the pore size and porosity near the wall region, limiting the flow and mass transport properties. This reduction may affect the overall performance of devices such as the electroosmotic pump t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Journal of Precision Engineering and Manufacturing-Green Technology 2014, 1(3), , pp.207-213
Hauptverfasser: Cheema, Taqi Ahmad, Kim, Kyung Won, Kwak, Moon Kyu, Lee, Choon Young, Kim, Gyu Man, Park, Cheol Woo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Applying mechanical pressure on a solid boundary contact using a thin porous layer has been found to reduce the pore size and porosity near the wall region, limiting the flow and mass transport properties. This reduction may affect the overall performance of devices such as the electroosmotic pump that generally uses a porous media with constant porosity in an electric field. Therefore, to improve the performance of such devices, a composite porous layer that uses a combination of different porosity value based on the location in the porous domain, is employed with a higher porosity near the wall region than that in the central region. In this study, a numerical simulation is conducted to investigate the fluid dynamic and mass transport characteristics using a composite porous layer with electroosmotic flow. A comparison of the results with the pressure-driven flow shows the effectiveness of the composite porous layer in compensating for the loss of porosity and in improving device performance. The proposed methodology may also enhance the performance of green energy devices such as fuel cells.
ISSN:2288-6206
2198-0810
DOI:10.1007/s40684-014-0026-z