Remarks on generalized (α, β)-derivations in semiprime rings
Let $R$ be an associative ring and $\alpha, \beta: R\rightarrow R$ ring homomorphisms. An additive mapping $d:R\rightarrow R$ is called an $(\alpha, \beta)$-derivation of $R$ if $d(xy)=d(x)\alpha(y)+\beta(x)d(y)$ is fulfilled for any $x,y \in R$, and an additive mapping $D:R\rightarrow R$ is called...
Gespeichert in:
Veröffentlicht in: | Communications of the Korean Mathematical Society 2017, 32(3), , pp.535-542 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let $R$ be an associative ring and $\alpha, \beta: R\rightarrow R$ ring homomorphisms. An additive mapping $d:R\rightarrow R$ is called an $(\alpha, \beta)$-derivation of $R$ if $d(xy)=d(x)\alpha(y)+\beta(x)d(y)$ is fulfilled for any $x,y \in R$, and an additive mapping $D:R\rightarrow R$ is called a generalized $(\alpha, \beta)$-derivation of $R$ associated with an $(\alpha, \beta)$-derivation $d$ if $D(xy)=D(x)\alpha(y)+\beta(x)d(y)$ is fulfilled for all $x,y \in R$. In this note, we intend to generalize a theorem of Vukman \cite{V}, and a theorem of Daif and El-Sayiad \cite{DS}. KCI Citation Count: 0 |
---|---|
ISSN: | 1225-1763 2234-3024 |
DOI: | 10.4134/CKMS.c160203 |