Remarks on generalized (α, β)-derivations in semiprime rings

Let $R$ be an associative ring and $\alpha, \beta: R\rightarrow R$ ring homomorphisms. An additive mapping $d:R\rightarrow R$ is called an $(\alpha, \beta)$-derivation of $R$ if $d(xy)=d(x)\alpha(y)+\beta(x)d(y)$ is fulfilled for any $x,y \in R$, and an additive mapping $D:R\rightarrow R$ is called...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications of the Korean Mathematical Society 2017, 32(3), , pp.535-542
Hauptverfasser: Motoshi Hongan, Nadeem Ur Rehman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let $R$ be an associative ring and $\alpha, \beta: R\rightarrow R$ ring homomorphisms. An additive mapping $d:R\rightarrow R$ is called an $(\alpha, \beta)$-derivation of $R$ if $d(xy)=d(x)\alpha(y)+\beta(x)d(y)$ is fulfilled for any $x,y \in R$, and an additive mapping $D:R\rightarrow R$ is called a generalized $(\alpha, \beta)$-derivation of $R$ associated with an $(\alpha, \beta)$-derivation $d$ if $D(xy)=D(x)\alpha(y)+\beta(x)d(y)$ is fulfilled for all $x,y \in R$. In this note, we intend to generalize a theorem of Vukman \cite{V}, and a theorem of Daif and El-Sayiad \cite{DS}. KCI Citation Count: 0
ISSN:1225-1763
2234-3024
DOI:10.4134/CKMS.c160203