Adaptive synchronization between two non-identical BAM neural networks with unknown parameters and time-varying delays

In this paper, the synchronization of two non-identical bidirectional associative memory ( BAM ) neural networks with unknown parameters and time-varying delays is investigated. Two adaptive controllers are designed to guarantee the global asymptotic synchronization of state trajectories for two non...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of control, automation, and systems 2017, Automation, and Systems, 15(4), , pp.1877-1887
Hauptverfasser: Zarefard, Mostafa, Effati, Sohrab
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, the synchronization of two non-identical bidirectional associative memory ( BAM ) neural networks with unknown parameters and time-varying delays is investigated. Two adaptive controllers are designed to guarantee the global asymptotic synchronization of state trajectories for two non-identical BAM neural networks. Lyapunov stability theory and Barbalat’s lemma are used to guarantee the synchronization of response and drive systems. Finally, an illustrative example is given to demonstrate the effectiveness of the presented synchronization scheme.
ISSN:1598-6446
2005-4092
DOI:10.1007/s12555-015-0462-8