Reducing subspaces of a class of multiplication operators
Let $M_{z^N}$($N\in \mathbb{Z}_+^d$) be a bounded multiplication operator on a class of Hilbert spaces with orthogonal basis $\{z^n: n\in \mathbb{Z}_+^d\}$. In this paper, we prove that each reducing subspace of $M_{z^N}$ is the direct sum of some minimal reducing subspaces. For the case that $d=2$,...
Gespeichert in:
Veröffentlicht in: | Taehan Suhakhoe hoebo 2017, 54(4), , pp.1443-1455 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let $M_{z^N}$($N\in \mathbb{Z}_+^d$) be a bounded multiplication operator on a class of Hilbert spaces with orthogonal basis $\{z^n: n\in \mathbb{Z}_+^d\}$. In this paper, we prove that each reducing subspace of $M_{z^N}$ is the direct sum of some minimal reducing subspaces. For the case that $d=2$, we find all the minimal reducing subspaces of $M_{z^N}(N=(N_1,N_2), N_1\neq N_2)$ on weighted Bergman space $A_\alpha^2(\mathbb{B}_2)(\alpha>-1)$ and Hardy space $H^2(\mathbb{B}_2)$, and characterize the structure of $\mathcal{V}^*(z^N)$, the commutant algebra of the von Neumann algebra generated by $M_{z^N}$. KCI Citation Count: 0 |
---|---|
ISSN: | 1015-8634 2234-3016 |
DOI: | 10.4134/BKMS.b160618 |