SOME ARITHMETIC PROPERTIES ON NONSTANDARD NUMBER FIELDS

For a given number field $K$, we show that the ranks of elliptic curves over $K$ are uniformly finitely bounded if and only if the weak Mordell-Weil property holds in all (some) ultrapowers $^*K$ of $K$. We introduce the nonstandard weak Mordell-Weil property for $^*K$ considering each Mordell-Weil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Korean Mathematical Society 2017, 54(4), , pp.1345-1356
1. Verfasser: 이정욱
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For a given number field $K$, we show that the ranks of elliptic curves over $K$ are uniformly finitely bounded if and only if the weak Mordell-Weil property holds in all (some) ultrapowers $^*K$ of $K$. We introduce the nonstandard weak Mordell-Weil property for $^*K$ considering each Mordell-Weil group as $^*\BZ$-module, where $^*\BZ$ is an ultrapower of $\BZ$, and we show that the nonstandard weak Mordell-Weil property is equivalent to the weak Mordell-Weil property in $^*K$. In a saturated nonstandard number field, there is a nonstandard ring of integers $^*\BZ$, which is definable. We can consider definable abelian groups as $^*\BZ$-modules so that the nonstandard weak Mordell-Weil property is well-defined, and we conclude that the nonstandard weak Mordell-Weil property and the weak Mordell-Weil property are equivalent. We have valuations induced from prime numbers in nonstandard rational number fields, and using these valuations, we identify two nonstandard rational numbers. KCI Citation Count: 0
ISSN:0304-9914
2234-3008
DOI:10.4134/JKMS.j160518