주성분 분석을 이용한 야콘의 재배지대 구분
To establish cultivation areas for the stable production of yacon, this study investigated the productivity and functional component contents of yacon in eight regions of Korea from 2011 to 2013. The results of principal component analysis using these data were as follows. A survey of 16 agricultura...
Gespeichert in:
Veröffentlicht in: | Korean journal of crop science 2017, 62(2), , pp.149-155 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | kor |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To establish cultivation areas for the stable production of yacon, this study investigated the productivity and functional component contents of yacon in eight regions of Korea from 2011 to 2013. The results of principal component analysis using these data were as follows. A survey of 16 agricultural traits and meteorological data in the eight yacon cultivation areas showed that five factors (average temperature, maximum temperature, minimum temperature, frost-free days, and fructooligosaccharide content) were highly significant at the p < 0.001 level. Among the 16 agricultural traits and meteorological data used in the main component analysis of yacon cultivation areas, approximately eight contributed to the first principal component, and approximately four contributed to each of the second and third principal components. In particular, factors related to productivity, fructooligosaccharide content, and temperature change were considered important criteria for the classification of cultivation areas. The cultivation areas were divided into three groups by principal component analysis. In Group I, containing the Jinbu and Bonghwa areas in the mid-highland region at 500-560 m above sea level, the product yield was the highest at 2,622-3,196 kg/10a, the fructooligosaccharide content was also the highest at 9.04-9.62%, and the mean temperature was 17.3-18.5℃. In Group II, the areas Suncheon, Okcheon, Yeoju, and Gangneung, at 20-180 m above sea level, had the lowest yield, relatively lower fructooligosaccharide content, and the highest temperature. The areas in Group III showed values intermediate between those of Group I and Group II. For the different yacon cultivation areas, the product quantity and fructooligosaccharide content differed according to the environmental temperature, and the temperature conditions and number of frost-free days are considered important indicators for cultivation sites. Therefore, in terms of producing yacon with high quality, cultivation at 500-560 m is considered to give a higher yield and functional fructooligosaccharide content. |
---|---|
ISSN: | 0252-9777 2287-8432 |
DOI: | 10.7740/kjcs.2017.62.2.149 |