Parallel task scheduling under multi-Clouds
In the Cloud, for the scheduling of parallel jobs, there are many tasks in a job and those tasks are executed concurrently on different VMs (Visual machines), where each task of the job will be executed synchronously. The goal of scheduling is to reduce the execution time and to keep the fairness be...
Gespeichert in:
Veröffentlicht in: | KSII transactions on Internet and information systems 2017, 11(1), , pp.39-60 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the Cloud, for the scheduling of parallel jobs, there are many tasks in a job and those tasks are executed concurrently on different VMs (Visual machines), where each task of the job will be executed synchronously. The goal of scheduling is to reduce the execution time and to keep the fairness between jobs to prevent some jobs from waiting more time than others. We propose a Cloud model which has multiple Clouds, and under this model, jobs are in different lists according to the waiting time of the jobs and every job has different parallelism. At the same time, a new method-ZOMT (the scheduling parallel tasks based on ZERO-ONE scheduling with multiple targets) is proposed to solve the problem of scheduling parallel jobs in the Cloud. Simulations of ZOMT, AFCFS (Adapted First Come First Served), LJFS (Largest Job First Served) and Fair are executed to test the performance of those methods. Metrics about the waiting time, and response time are used to test the performance of ZOMT. The simulation results have shown that ZOMT not only reduces waiting time and response time, but also provides fairness to jobs. |
---|---|
ISSN: | 1976-7277 1976-7277 |
DOI: | 10.3837/tiis.2017.01.003 |