COMMUTATORS OF SINGULAR INTEGRAL OPERATOR ON HERZ-TYPE HARDY SPACES WITH VARIABLE EXPONENT
Let $\Omega\in L^s(\mathrm{S}^{n-1})$ for $s>1$ be a homogeneous function of degree zero and $b$ be BMO functions or Lipschitz functions. In this paper, we obtain some boundedness of the Calder\'{o}n-Zygmund singular integral operator $T_\Omega$ and its commutator $[b,T_\Omega]$ on Herz-type...
Gespeichert in:
Veröffentlicht in: | Journal of the Korean Mathematical Society 2017, 54(3), , pp.713-732 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let $\Omega\in L^s(\mathrm{S}^{n-1})$ for $s>1$ be a homogeneous function of degree zero and $b$ be BMO functions or Lipschitz functions. In this paper, we obtain some boundedness of the Calder\'{o}n-Zygmund singular integral operator $T_\Omega$ and its commutator $[b,T_\Omega]$ on Herz-type Hardy spaces with variable exponent. KCI Citation Count: 10 |
---|---|
ISSN: | 0304-9914 2234-3008 |
DOI: | 10.4134/JKMS.j150771 |