On the Ruled Surfaces with L 1 -Pointwise 1-Type Gauss Map
In this paper, we study ruled surfaces in 3-dimensional Euclidean and Minkowski space in terms of their Gauss map. We obtain classification theorems for these type of surfaces whose Gauss map $G$ satisfying $\square G=f(G+C)$ for a constant vector $C\in\mathbb E^3$ and a smooth function $f,$ where $...
Gespeichert in:
Veröffentlicht in: | Kyungpook mathematical journal 2017, 57(1), , pp.133-144 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we study ruled surfaces in 3-dimensional Euclidean and Minkowski space in terms of their Gauss map. We obtain classification theorems for these type of surfaces whose Gauss map $G$ satisfying $\square G=f(G+C)$ for a constant vector $C\in\mathbb E^3$ and a smooth function $f,$ where $\square$ denotes the Cheng-Yau operator. KCI Citation Count: 1 |
---|---|
ISSN: | 1225-6951 0454-8124 |
DOI: | 10.5666/KMJ.2017.57.1.133 |