On the Ruled Surfaces with L 1 -Pointwise 1-Type Gauss Map

In this paper, we study ruled surfaces in 3-dimensional Euclidean and Minkowski space in terms of their Gauss map. We obtain classification theorems for these type of surfaces whose Gauss map $G$ satisfying $\square G=f(G+C)$ for a constant vector $C\in\mathbb E^3$ and a smooth function $f,$ where $...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Kyungpook mathematical journal 2017, 57(1), , pp.133-144
Hauptverfasser: Kim, Young Ho, Turgay, Nurettin Cenk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study ruled surfaces in 3-dimensional Euclidean and Minkowski space in terms of their Gauss map. We obtain classification theorems for these type of surfaces whose Gauss map $G$ satisfying $\square G=f(G+C)$ for a constant vector $C\in\mathbb E^3$ and a smooth function $f,$ where $\square$ denotes the Cheng-Yau operator. KCI Citation Count: 1
ISSN:1225-6951
0454-8124
DOI:10.5666/KMJ.2017.57.1.133