Discrimination of charged particles in a neutral beam line by using a solid scintillation detector

In the past several decades, many studies have been conducted to search for non-baryonic dark matter, such as weakly interactive massive particles (WIMPs). In the search for WIMPs, charged particles incident on the detector are background particles because WIMPs are neutral. Charged particles origin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Korean Physical Society 2017, 70(2), , pp.213-218
Hauptverfasser: Woo, Jong-Kwan, Ko, Jewou, Liu, Dong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the past several decades, many studies have been conducted to search for non-baryonic dark matter, such as weakly interactive massive particles (WIMPs). In the search for WIMPs, charged particles incident on the detector are background particles because WIMPs are neutral. Charged particles originate from various sources, such as cosmic rays and laboratory materials surrounding the main detector. Therefore, a veto that discriminates charged particles can improve the particle-detection efficiency of the entire experiment for detecting WIMPs. Here, we investigate in the thickness range of 1 mm to 5 mm, the optimal thickness of a polystyrene scintillator as a chargedparticle veto detector. We found that 3-mm-thick polystyrene provides the best performance to veto charged particles and the charged-particle background in the search for the WIMP signal. Furthermore, we fabricated 3-mm-thick and 5-mm-thick polystyrene charged particle veto detectors that will be used in an underground laboratory in the search for WIMP dark matter. After exposing those detectors are the actual beam line, we compared the rate of charged particles measured using those detectors and the rate simulated through a Monte Carlo simulation.
ISSN:0374-4884
1976-8524
DOI:10.3938/jkps.70.213