Delay-dependent robust stability criteria for delay neural networks with linear fractional uncertainties

This article investigates the problem of robust stability for neural networks with time-varying delays and parameter uncertainties of linear fractional form. By introducing a new Lyapunov-Krasovskii functional and a tighter inequality, delay-dependent stability criteria are established in term of li...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of control, automation, and systems 2009, Automation, and Systems, 7(2), , pp.281-287
Hauptverfasser: Li, Tao, Guo, Lei, Wu, Lingyao, Sun, Changyin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article investigates the problem of robust stability for neural networks with time-varying delays and parameter uncertainties of linear fractional form. By introducing a new Lyapunov-Krasovskii functional and a tighter inequality, delay-dependent stability criteria are established in term of linear matrix inequalities (LMIs). It is shown that the obtained criteria can provide less conservative results than some existing ones. Numerical examples are given to demonstrate the applicability of the proposed approach.
ISSN:1598-6446
2005-4092
DOI:10.1007/s12555-009-0214-8