Multi-innovation stochastic gradient parameter estimation for input nonlinear controlled autoregressive models
This paper proposes a multi-innovation stochastic gradient (MISG) parameter estimation algorithm for an input nonlinear controlled autoregressive (IN-CAR) model, i.e., a Hammerstein nonlinear CAR system, by expanding the innovation length. The analysis and simulation results indicate that the propos...
Gespeichert in:
Veröffentlicht in: | International journal of control, automation, and systems 2012, Automation, and Systems, 10(3), , pp.639-643 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper proposes a multi-innovation stochastic gradient (MISG) parameter estimation algorithm for an input nonlinear controlled autoregressive (IN-CAR) model, i.e., a Hammerstein nonlinear CAR system, by expanding the innovation length. The analysis and simulation results indicate that the proposed MISG algorithm can generate more accurate parameter estimates for IN-CAR systems compared with the stochastic gradient algorithm. |
---|---|
ISSN: | 1598-6446 2005-4092 |
DOI: | 10.1007/s12555-012-0322-8 |