Multi-innovation stochastic gradient parameter estimation for input nonlinear controlled autoregressive models

This paper proposes a multi-innovation stochastic gradient (MISG) parameter estimation algorithm for an input nonlinear controlled autoregressive (IN-CAR) model, i.e., a Hammerstein nonlinear CAR system, by expanding the innovation length. The analysis and simulation results indicate that the propos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of control, automation, and systems 2012, Automation, and Systems, 10(3), , pp.639-643
Hauptverfasser: Xiao, Yongsong, Song, Guanglei, Liao, Yuwu, Ding, Ruifeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes a multi-innovation stochastic gradient (MISG) parameter estimation algorithm for an input nonlinear controlled autoregressive (IN-CAR) model, i.e., a Hammerstein nonlinear CAR system, by expanding the innovation length. The analysis and simulation results indicate that the proposed MISG algorithm can generate more accurate parameter estimates for IN-CAR systems compared with the stochastic gradient algorithm.
ISSN:1598-6446
2005-4092
DOI:10.1007/s12555-012-0322-8