Therapeutic intravascular microrobot through compensation of resistance and mutual inductance in electromagnetic actuation system

This paper proposes a locomotive, therapeutic microrobot based on an electromagnetic actuation (EMA) system for intravascular treatment. The proposed EMA system consists of the two pairs of stationary Helmholtz and Maxwell coils along the x-axis and two pairs of rotational uniform saddle coil (USC)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of control, automation, and systems 2015, Automation, and Systems, 13(6), , pp.1465-1475
Hauptverfasser: Jeong, Semi, Choi, Hyunchul, Lee, Cheong, Go, Gwangjun, Sim, Doo Sun, Lim, Kyung Seob, Jeong, Myung Ho, Ko, Seong Young, Park, Jong-oh, Park, Sukho
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes a locomotive, therapeutic microrobot based on an electromagnetic actuation (EMA) system for intravascular treatment. The proposed EMA system consists of the two pairs of stationary Helmholtz and Maxwell coils along the x-axis and two pairs of rotational uniform saddle coil (USC) and gradient saddle coil (GSC) about the x-axis. A microrobot actuated by this type of EMA system can be used as a locomotive, therapeutic microrobot in medical applications. Especially, when we apply sinusoidal currents to the Maxwell coil and GSC pairs, the microrobot shows oscillatory forward and backward motion (which is called as hammering motion); however, when sinusoidal voltages are applied to the Maxwell coil and GSC pairs, the microrobot does not show the desired hammering motion. W proposes a compensation algorithm for the resistance and inductance variations and demonstrates the desired hammering motion for the effective therapeutic function of the microrobot. Through various experiments, we validate that the proposed microrobot using the EMA system can show precise locomotion and provide enhanced treatment.
ISSN:1598-6446
2005-4092
DOI:10.1007/s12555-014-0226-x