Smart damper using sliding friction of aramid brake lining and self-centering of rubber springs

The purpose of this study is to develop a smart damper with flag-shaped behavior by using the sliding friction of aramid brake lining and the restoring capacity of pre-compressed rubber springs. For this purpose, the friction force of aramid brake lining pressed by bolts was used along with polyuret...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of steel structures 2016, 16(4), , pp.1239-1250
Hauptverfasser: Jeong, Kyuho, Choi, Eunsoo, Back, Sung-Yong, Kang, Joo-Won
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The purpose of this study is to develop a smart damper with flag-shaped behavior by using the sliding friction of aramid brake lining and the restoring capacity of pre-compressed rubber springs. For this purpose, the friction force of aramid brake lining pressed by bolts was used along with polyurethane rubbers, each with a length of 80 mm, a diameter of 95 mm, and a circular hole of 37 mm. In the experiments, loading frequency and torque force were considered. The loading frequency varied from 0.1 to 2.0 Hz, and frictional force was controlled by variable bolt torque force. The tests were conducted to demonstrate that the clamping force by the bolts could provide normal force to frictional material. The friction force by the aramid brake lining sliding was tested, followed by the pre-compressed rubber springs' behavior. Afterward, a damper combining the two components was tested to verify flag-shaped behavior by using a dynamic actuator, and the damping ratios were evaluated from the hysteretic curves. The behavior of the damper closely matched flag-shaped behavior, resulting in self-centering and energy dissipation capacity.
ISSN:1598-2351
2093-6311
DOI:10.1007/s13296-016-0065-0