A full error dynamics switching modeling and control scheme for an articulated vehicle

In this article, a complete analysis towards the development of a switching modeling and control framework for an articulated vehicle, under the effect of varying slip angles will be presented. The established nonlinear kinematic model, of the nonholonomic articulated vehicle, will be transformed in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of control, automation, and systems 2015, Automation, and Systems, 13(5), , pp.1221-1232
Hauptverfasser: Nayl, Thaker, Nikolakopoulos, George, Gustafsson, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, a complete analysis towards the development of a switching modeling and control framework for an articulated vehicle, under the effect of varying slip angles will be presented. The established nonlinear kinematic model, of the nonholonomic articulated vehicle, will be transformed into an error dynamics model, which in the sequel will be linearized around multiple nominal slip angle cases. The proposed control architecture will consist of a switching control scheme, based on multiple model predictive controllers, for the articulated vehicle under varying slip angles. The controllers will be developed in order to improve the performance of the articulated vehicle’s path tracking, while compensating the varying slippage effect. The current measured slip angle is being considered as the switching rule and a corresponding switching control scheme is being defined, being able to apply constraints on the states, the control signal and the output variables. Both the non-slip and slip models will be derived to highlight the significance of accounting for slips in path following control and their significant effect on deteriorating the performance of the overall control scheme when not considered. Multiple simulation results will be presented to prove the efficacy of the overall suggested scheme.
ISSN:1598-6446
2005-4092
2005-4092
DOI:10.1007/s12555-014-0049-9