Move blocking strategy applied to re-entrant manufacturing line scheduling

Model predictive control (MPC)-based approach to fab-wide scheduling has been suggested to solve constraint-aware production optimization and in-process inventory level control simultaneously at each scheduling instance. However, application of this approach to real fab suffers from computational di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of control, automation, and systems 2015, Automation, and Systems, 13(2), , pp.410-418
Hauptverfasser: Jung, Tae Y., Jang, Hong, Lee, Jay H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Model predictive control (MPC)-based approach to fab-wide scheduling has been suggested to solve constraint-aware production optimization and in-process inventory level control simultaneously at each scheduling instance. However, application of this approach to real fab suffers from computational difficulties brought by the need to solve a huge optimization problem on-line as real fab scheduling problems are characterized by long cycle times, multiple product types, hundreds of machines/processing steps and re-entrant product flows. This study explores the use of an offset-blocking strategy combined with a modified recursive least square (RLS) estimation in the fab-wide scheduler, in order to alleviate the difficulty. The strategy is tested on a modified version of published case study called Intel Mini-Fab (IMF) problem. Despite its simplicity, the blocking strategy showed excellent performance in the face of realistic demand changes and plant/model mismatch.
ISSN:1598-6446
2005-4092
DOI:10.1007/s12555-014-0243-9