Effect of pH on soil bacterial diversity

Background In order to evaluate the effect of pH, known as a critical factor for shaping the biogeographical microbial patterns in the studies by others, on the bacterial diversity, we selected two sites in a similar geographical location (site 1; north latitude 35.3, longitude 127.8, site 2; north...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of ecology and environment 2016, 40(1), , pp.75-83
Hauptverfasser: Cho, Sun-Ja, Kim, Mi-Hee, Lee, Young-Ok
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background In order to evaluate the effect of pH, known as a critical factor for shaping the biogeographical microbial patterns in the studies by others, on the bacterial diversity, we selected two sites in a similar geographical location (site 1; north latitude 35.3, longitude 127.8, site 2; north latitude 35.2, longitude 129.2) and compared their soil bacterial diversity between them. The mountain soil at site 1 (Jiri National Park) represented naturally acidic but almost pollution free (pH 5.2) and that at site 2 was neutral but exposed to the pollutants due to the suburban location of a big city (pH 7.7). Methods Metagenomic DNAs from soil bacteria were extracted and amplified by PCR with 27F/518R primers and pyrosequenced using Roche 454 GS FLX Titanium. Results Bacterial phyla retrieved from the soil at site 1 were more diverse than those at site 2, and their bacterial compositions were quite different: Almost half of the phyla at site 1 were Proteobacteria (49 %), and the remaining phyla were attributed to 10 other phyla. By contrast, in the soil at site 2, four main phyla (Actinobacteria, Bacteroidetes, Proteobacteria, and Cyanobacteria) composed 94 %; the remainder was attributed to two other phyla. Furthermore, when bacterial composition was examined on the order level, only two Burkholderiales and Rhizobiales were found at both sites. So depending on pH, the bacterial community in soil at site 1 differed from that at site 2, and although the acidic soil of site 1 represented a non-optimal pH for bacterial growth, the bacterial diversity, evenness, and richness at this site were higher than those found in the neutral pH soil at site 2. Conclusions These results and the indices regarding diversity, richness, and evenness examined in this study indicate that pH alone might not play a main role for bacterial diversity in soil.
ISSN:2288-1220
2287-8327
2288-1220
DOI:10.1186/s41610-016-0004-1