ON n-ABSORBING IDEALS AND THE n-KRULL DIMENSION OF A COMMUTATIVE RING
Let $R$ be a commutative ring with $1\neq 0$ and $n$ a positive integer. In this article, we introduce the $n$-Krull dimension of $R$, denoted $\dim_n R$, which is the supremum of the lengths of chains of $n$-absorbing ideals of $R$. We study the $n$-Krull dimension in several classes of commutative...
Gespeichert in:
Veröffentlicht in: | Journal of the Korean Mathematical Society 2016, 53(6), , pp.1225-1236 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let $R$ be a commutative ring with $1\neq 0$ and $n$ a positive integer. In this article, we introduce the $n$-Krull dimension of $R$, denoted $\dim_n R$, which is the supremum of the lengths of chains of $n$-absorbing ideals of $R$. We study the $n$-Krull dimension in several classes of commutative rings. For example, the $n$-Krull dimension of an Artinian ring is finite for every positive integer $n$. In particular, if $R$ is an Artinian ring with $k$ maximal ideals and $l(R)$ is the length of a composition series for $R$, then $\dim_n R = l(R) -k $ for some positive integer $n$. It is proved that a Noetherian domain $R$ is a Dedekind domain if and only if $\dim_nR=n$ for every positive integer $n$ if and only if $\dim_2R=2$. It is shown that Krull's (Generalized) Principal Ideal Theorem does not hold in general when prime ideals are replaced by $n$-absorbing ideals for some $n>1$. KCI Citation Count: 1 |
---|---|
ISSN: | 0304-9914 2234-3008 |
DOI: | 10.4134/JKMS.j150072 |