Dynamics of bacterial communities in rice field soils as affected by different long-term fertilization practices
Fertilization and the response of the soil microbial community to the process significantly affect crop yield and the environment. In this study, the seasonal variation in the bacterial communities in rice field soil subjected to different fertilization treatments for more than 50 years was investig...
Gespeichert in:
Veröffentlicht in: | The journal of microbiology 2016, 54(11), , pp.724-731 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Fertilization and the response of the soil microbial community to the process significantly affect crop yield and the environment. In this study, the seasonal variation in the bacterial communities in rice field soil subjected to different fertilization treatments for more than 50 years was investigated using 16S rRNA sequencing. The simultaneous application of inorganic fertilizers and rice straw compost (CAPK) maintained the species richness of the bacterial communities at levels higher than that in the case of non-fertilization (NF) and application of inorganic fertilizers only (APK) in the initial period of rice growth. The seasonal variation in the bacterial community structure in the NF and APK plots showed cyclic behavior, suggesting that the effect of season was important; however, no such trend was observed in the CAPK plot. In the CAPK plot, the relative abundances of putative copiotrophs such as
Bacteroidetes
,
Firmicutes
, and
Proteobacteria
were higher and those of putative oligotrophs such as
Acidobacteria
and
Plactomycetes
were lower than those in the other plots. The relative abundances of organotrophs with respiratory metabolism, such as
Actinobacteria
, were lower and those of chemoautotrophs that oxidize reduced iron and sulfur compounds were higher in the CAPK plot, suggesting greater carbon storage in this plot. Increased methane emission and nitrogen deficiency, which were inferred from the higher abundances of
Methylocystis
and
Bradyrhizobium
in the CAPK plot, may be a negative effect of rice straw application; thus, a solution for these should be considered to increase the use of renewable resources in agricultural lands. |
---|---|
ISSN: | 1225-8873 1976-3794 |
DOI: | 10.1007/s12275-016-6463-3 |