Monte Carlo simulations of safeguards neutron counter for oxide reduction process feed material

One of the options for spent-fuel management in Korea is pyroprocessing whose main process flow is the head-end process followed by oxide reduction, electrorefining, and electrowining. In the present study, a well-type passive neutron coincidence counter, namely, the ACP (Advanced spent fuel Conditi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Korean Physical Society 2016, 69(7), , pp.1175-1181
Hauptverfasser: Seo, Hee, Lee, Chaehun, Oh, Jong-Myeong, An, Su Jung, Ahn, Seong-Kyu, Park, Se-Hwan, Ku, Jeong-Hoe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:One of the options for spent-fuel management in Korea is pyroprocessing whose main process flow is the head-end process followed by oxide reduction, electrorefining, and electrowining. In the present study, a well-type passive neutron coincidence counter, namely, the ACP (Advanced spent fuel Conditioning Process) safeguards neutron counter (ASNC), was redesigned for safeguards of a hot-cell facility related to the oxide reduction process. To this end, first, the isotopic composition, gamma/neutron emission yield and energy spectrum of the feed material ( i.e ., the UO 2 porous pellet) were calculated using the OrigenARP code. Then, the proper thickness of the gammaray shield was determined, both by irradiation testing at a standard dosimetry laboratory and by MCNP6 simulations using the parameters obtained from the OrigenARP calculation. Finally, the neutron coincidence counter’s calibration curve for 100- to 1000-g porous pellets, in consideration of the process batch size, was determined through simulations. Based on these simulation results, the neutron counter currently is under construction. In the near future, it will be installed in a hot cell and tested with spent fuel materials.
ISSN:0374-4884
1976-8524
DOI:10.3938/jkps.69.1175