진동만과 가막만에 서식하는 잘피 개체군의 생장 동태 및 탄소고정량 추정
Since seagrasses in the coastal and estuarine ecosystems achieve high levels of production, they require high inorganic carbon and nutrient incorporation. Thus, seagrasses may play a significant role in carbon and nutrient cycling in the coastal and estuarine ecosystems. To examine growth dynamics o...
Gespeichert in:
Veröffentlicht in: | Algae (Korean Phycological Society) 2008, 23(3), , pp.241-250 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | kor |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Since seagrasses in the coastal and estuarine ecosystems achieve high levels of production, they require high inorganic carbon and nutrient incorporation. Thus, seagrasses may play a significant role in carbon and nutrient cycling in the coastal and estuarine ecosystems. To examine growth dynamics of Zostera marina L. environmental factors such as underwater irradiance, water temperature, and salinity, and biological parameters such as shoot density, biomass, shoot morphology, and leaf productivity were measured in two bay systems (Jindong Bay and Gamak Bay) on the southern coast of Korea. While underwater irradiance did not show distinct seasonal trend, water temperature at both sites exhibited clear seasonal trend throughout the experimental period. Shoot density increased dramatically during winter due to the increased seedlings through germination of seeds in Jindong Bay and due to the increased lateral shoots in Gamak Bay. Eelgrass biomass increased during winter and decreased during summer. Maximum biomass in Jindong Bay and Gamak Bay was 250.2 and 232.3 g dry weight m–a2, respectively. Carbon incorporation into the eelgrass leaf tissues was estimated from productivity and leaf tissues carbon content. The calculated annual carbon incorporations at the Jindong Bay and Gamak Bay sites were 163 and 295 g C m–`2 y–`1, respectively. This high carbon incorporation into seagrass tissues suggests that seagrass habitats play an important role as a carbon absorber in the coastal and estuarine ecosystems. |
---|---|
ISSN: | 1226-2617 2093-0860 |