Modeling of Low-Energy Ion Implantation Process by Molecular Dynamics (MD) Approach

In this paper, we report a molecular dynamics (MD) simulation of ion implantation for nano-scale devices with ultra-shallow junctions. In order to model the prole of ion distribution in nanometer scale, molecular dynamics with a recoil ion approximation is employed while the Kinetic Monte Carlo (KMC...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Korean Physical Society 2004, 45(3), , pp.791-794
Hauptverfasser: Oh-Seob KWON, Ji-Hyun SEO, Ki-Dong KIM, Tae-Young WON
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we report a molecular dynamics (MD) simulation of ion implantation for nano-scale devices with ultra-shallow junctions. In order to model the prole of ion distribution in nanometer scale, molecular dynamics with a recoil ion approximation is employed while the Kinetic Monte Carlo (KMC) diusion model is used for the dynamic annealing between cascades. The calculation is performed for B with energies down to 100 eV and dose 1 1014 ions/cm2. The B and As implant is simulated with energies of 0.5, 1, 2, 4, 8, and 16 keV and with dose of 1 1014 ions/cm2 into Si , respectively. Then, we consider the experimental data for B implant with energy of 2 keV, doses of 1 1014 ions/cm2 and 1 1015 ions/cm2, and dose rate of 1 1012 ions/cm2sec, both with and without taking dynamic annealing into account. KCI Citation Count: 1
ISSN:0374-4884
1976-8524