Modeling of Low-Energy Ion Implantation Process by Molecular Dynamics (MD) Approach
In this paper, we report a molecular dynamics (MD) simulation of ion implantation for nano-scale devices with ultra-shallow junctions. In order to model the prole of ion distribution in nanometer scale, molecular dynamics with a recoil ion approximation is employed while the Kinetic Monte Carlo (KMC...
Gespeichert in:
Veröffentlicht in: | Journal of the Korean Physical Society 2004, 45(3), , pp.791-794 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we report a molecular dynamics (MD) simulation of ion implantation for nano-scale
devices with ultra-shallow junctions. In order to model the prole of ion distribution in nanometer
scale, molecular dynamics with a recoil ion approximation is employed while the Kinetic Monte
Carlo (KMC) diusion model is used for the dynamic annealing between cascades. The calculation
is performed for B with energies down to 100 eV and dose 1 1014 ions/cm2. The B and As
implant is simulated with energies of 0.5, 1, 2, 4, 8, and 16 keV and with dose of 1 1014 ions/cm2
into Si , respectively. Then, we consider the experimental data for B implant with energy of
2 keV, doses of 1 1014 ions/cm2 and 1 1015 ions/cm2, and dose rate of 1 1012 ions/cm2sec,
both with and without taking dynamic annealing into account. KCI Citation Count: 1 |
---|---|
ISSN: | 0374-4884 1976-8524 |