Exact Quantum Theory of the Harmonic Oscillator with the Classical Solution in the Form of Mathieu Functions
Using the dynamical invariant operator method, we obtain the exact wave function, uncertainty relation, and energy eigenvalues for the harmonic oscillator with the classical equation of motion in the form of Mathieu functions. The probability density varies as a function of position, but is almost c...
Gespeichert in:
Veröffentlicht in: | Journal of the Korean Physical Society 2002, 40(6), , pp.969-973 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | kor |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Using the dynamical invariant operator method, we obtain the exact wave function, uncertainty
relation, and energy eigenvalues for the harmonic oscillator with the classical equation of motion
in the form of Mathieu functions. The probability density varies as a function of position, but is
almost constant in time. The uncertainty relations satisfy the minimum uncertainty, and the energy
eigenvalues oscillate slowly or rapidly depending on the frequency. The quantum and classical
energies oscillate in a similar fashion with respect to frequency and time. KCI Citation Count: 10 |
---|---|
ISSN: | 0374-4884 1976-8524 |