Mechanisms underlying the protective effect of eugenol in rats with acute doxorubicin cardiotoxicity

The protective effect of eugenol and its possible mechanisms were investigated in rats with acute doxorubicin cardiotoxicity. Cardiac toxicity was induced by a single intraperitoneal injection of doxorubicin (20 mg/kg). Eugenol treatment (5 mg/kg/day, orally) was started 2 days before doxorubicin ad...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archives of pharmacal research 2011, 34(5), , pp.821-828
Hauptverfasser: Fouad, Amr A., Yacoubi, Mohamed T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The protective effect of eugenol and its possible mechanisms were investigated in rats with acute doxorubicin cardiotoxicity. Cardiac toxicity was induced by a single intraperitoneal injection of doxorubicin (20 mg/kg). Eugenol treatment (5 mg/kg/day, orally) was started 2 days before doxorubicin administration and continued for five consecutive days. Eugenol significantly reduced the elevated serum creatine kinase and lactate dehydrogenase levels, and restored the electrocardiographic disturbances resulted from doxorubicin administration. Also, eugenol reversed doxorubicin-induced deficits in the antioxidant defense mechanisms, decreased lipid peroxidation and attenuated the elevations in cytosolic Ca 2+ and nitric oxide levels in cardiac tissue. In addition, doxorubicin-induced cardiac tissue damage observed by histopathological examination was markedly ameliorated with eugenol. Immunohistochemical analysis revealed that eugenol prevented the doxorubicin-induced activation of caspase-3 in cardiomyocytes. The cardioprotective effect afforded by eugenol was not significantly inhibited by prior administration of capsazepine, the transient potential vanilloid receptor-1 antagonist. It was concluded that eugenol, through its antioxidant activity and its ability to reduce cardiac Ca 2+ accumulation and nitric oxide levels, is a potential candidate to protect against acute doxorubicin cardiotoxicity, a major and dose-limiting clinical problem.
ISSN:0253-6269
1976-3786
DOI:10.1007/s12272-011-0516-2