Glutamate 매개 흥분성 신경독성에 대한 봉독의 NSC-34 신경세포사멸 억제 효과

Bee venom (BV), which is extracted from honeybees, has been used in traditional Korean medical therapy. Glutamate-mediated excitotoxicity contributes to neuronal death in neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) or Alzheimer's disease (AD). This study is to investi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Yaghag-hoi-ji 2011, 55(5), , pp.385-390
Hauptverfasser: 이상민(Sang Min Lee), 최선미(Sun-Mi Choi), 정소영(So Young Jung), 양은진(Eun Jin Yang)
Format: Artikel
Sprache:kor
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bee venom (BV), which is extracted from honeybees, has been used in traditional Korean medical therapy. Glutamate-mediated excitotoxicity contributes to neuronal death in neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) or Alzheimer's disease (AD). This study is to investigate the effect of BV on glutamate-induced neurotoxicity on NSC-34 motor neuron cells. To determine the viability of motor neuronal cells, we performed with MTT assays in glutamate-treated NSC-34 cell with BV or without. For the measurement of oxidative stress, DCF assay was used in glutamate-treated NSC-34 motor neuronal cells with BV or without. To investigate the molecular mechanism of BV against glutamate-mediated neurotoxicity in NSC-34 cells, western blot analysis was used. Glutamate significantly decreased cell viability by glutamate dose- or treatment time-dependent manner in NSC-34 cells. However, BV pre-treatment dramatically inhibited glutamate-induced neuronal cell death. Furthermore, we found that BV increased the expression of Bcl-2 protein that is anti-apoptotic protein and reduced the generation of oxidative stress. BV has a neuroprotective role against glutamate neurotoxicity by an increase of anti-apoptotic protein. It suggests that BV may be useful for the reduction of neuronal cell death in neuronal disease models.
ISSN:0377-9556
2383-9457