Transport Properties of Nanoscale Materials for Molecular Wire Applications: A Case Study of Ferrocene Dimers

Recently, molecular electronics has been attracting significant attention as a post-silicon enabling technology for the fabrication of future nanoscale electronic devices. The geometric and the electronic structures of the proposed configurations of ferrocene-based dimer systems, such as bisferrocen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Korean Physical Society 2008, 52(4), , pp.1197-1201
Hauptverfasser: Mizuseki, Hiroshi, Belosludov, Rodion V., Uehara, Tomoki, Lee, Sang Uck, Kawazoe, Yoshiyuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recently, molecular electronics has been attracting significant attention as a post-silicon enabling technology for the fabrication of future nanoscale electronic devices. The geometric and the electronic structures of the proposed configurations of ferrocene-based dimer systems, such as bisferrocene-2,4-dithiolate, s-(bisferrocenyl)indacene-2,6-dithiolate and bis(ferrocenyl)pentalene-2,5-dithiolate, were examined using density functional theory. The transport properties were investigated using the nonequilibrium Green's function formalism for quantum transport. The results obtained indicate that the transmission coefficients of the dimers strongly depend on the metal-metal distance and on delocalization of the molecular levels. Thus, control of molecular orbital delocalization can be achieved by designing the metallocene-based polymer such that the metal-metal distance is optimal. KCI Citation Count: 10
ISSN:0374-4884
1976-8524
DOI:10.3938/jkps.52.1197