Self-Similarity in Fractal and Non-Fractal Networks

We study the origin of scale invariance (SI) of the degree distribution in scale-free (SF) networks with a degree exponent γ under coarse graining. A varying number of vertices belonging to a community or a box in a fractal analysis is grouped into a supernode, where the box mass M follows a power-l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Korean Physical Society 2008, 52(2), , pp.350-356
Hauptverfasser: Kim, J. S., Kahng, B., Kim, D., Goh, K.-I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the origin of scale invariance (SI) of the degree distribution in scale-free (SF) networks with a degree exponent γ under coarse graining. A varying number of vertices belonging to a community or a box in a fractal analysis is grouped into a supernode, where the box mass M follows a power-law distribution, PmM ~ M-\eta. The renormalized degree k′ of a supernode scales with its box mass M as k′ ~ Mθ. The two exponents η and θ can be nontrivial as η ≠ γ and θ < 1. They act as relevant parameters in determining the self-similarity, i.e., the SI of the degree distribution, as follows: The self-similarity appears either when γ ≠ η or under the condition θ = η-1)/(γ-1) when γ > η, irrespective of whether the original SF network is fractal or non-fractal. Thus, fractality and self-similarity are disparate notions in SF networks. KCI Citation Count: 7
ISSN:0374-4884
1976-8524
DOI:10.3938/jkps.52.350