The effect of magnification on image quality and radiation dose in X-ray digital mammography: a Monte Carlo simulation study
There have been many efforts to advance the technology of X-ray digital mammography in order to enhance the early detection of breast pathology. The purpose of this study was to evaluate image quality and the radiation dose after magnifying X-ray digital mammography using the Geant4 Application for...
Gespeichert in:
Veröffentlicht in: | Journal of the Korean Physical Society 2010, 57(3), , pp.494-500 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | There have been many efforts to advance the technology of X-ray digital mammography in order to enhance the early detection of breast pathology. The purpose of this study was to evaluate image quality and the radiation dose after magnifying X-ray digital mammography using the Geant4 Application for Tomographic Emission (GATE). In this study, we simulated a Monte Carlo model of an X-ray digital mammographic system, and we present a technique for magnification and discuss how it affects the image quality. The simulated X-ray digital mammographic system with GATE consists of an X-ray source, a compression paddle, a supporting plate, and an imaging plate (IP) of computed radiography (CR). The degree of magnification ranged from 1.0 to 2.0. We designed a semi-cylindrical phantom with a thickness of 45-mm and a radius of 50-mm in order to evaluate the image quality after magnification. The phantom was made of poly methyl methacrylate (PMMA) and contained four spherical specks with diameters of 750, 500, 250, and 100-µm to simulate microcalcifications. The simulation studies were performed with an X-ray energy spectrum calculated using the spectrum processor SRS-78. A combination of a molybdenum anode and a molybdenum filter (Mo/Mo) was used for the mammographic X-ray tubes. The effects of the degree of magnification were investigated in terms of both the contrast-to-noise ratio (CNR) and the average glandular dose (AGD). The results show that the CNR increased as the degree of magnification increased and decreased as breast glandularity increased. The AGD showed only a minor increase with magnification. Based on the results, magnification of mammographic images can be used to obtain high image quality with an increased CNR. Our X-ray digital mammographic system model with GATE may be used as a basis for future studies on X-ray imaging characteristics. KCI Citation Count: 3 |
---|---|
ISSN: | 0374-4884 1976-8524 |
DOI: | 10.3938/jkps.57.494 |