Characteristics of Laser Resonant Ultrasonic Spectroscopy System for Measuring Elastic Constants of Materials
Resonant ultrasound spectroscopy (RUS) is a useful technique for measuring the elastic properties of materials. In this study, two experimental approaches for performing RUS are experimentally analyzed and compared: 1) contact transduction using piezoelectric transducers (PZT) and 2) laser transduct...
Gespeichert in:
Veröffentlicht in: | Journal of the Korean Physical Society 2010, 57(21), , pp.375-379 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Resonant ultrasound spectroscopy (RUS) is a useful technique for measuring the elastic properties of materials. In this study, two experimental approaches for performing RUS are experimentally analyzed and compared: 1) contact transduction using piezoelectric transducers (PZT) and 2) laser transduction using pulse laser excitation and laser interferometric detection. A single Zircaloy sample cut from a nuclear pressure tube was used for this study. By virtue of the non-contact nature, the quality factor, Q, for laser RUS is shown to be higher than the contact RUS. In addition, the probe beam for laser-RUS can be scanned to form a 2D image of each vibrational mode, which in turn enables unique mode identification. These defining characteristics of laser-RUS enable straightforward discrimination of closely spaced resonant modes and provide key advantages for improving the resolution of resonant ultrasound spectroscopy. |
---|---|
ISSN: | 0374-4884 1976-8524 |
DOI: | 10.3938/jkps.57.375 |