Robust inference in an heteroscedastic measurement error model

In this paper we deal with robust inference in heteroscedastic measurement error models. Rather than the normal distribution, we postulate a Student t distribution for the observed variables. Maximum likelihood estimates are computed numerically. Consistent estimation of the asymptotic covariance ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Korean Statistical Society 2010, 39(4), , pp.439-447
Hauptverfasser: de Castro, Mário, Galea, Manuel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we deal with robust inference in heteroscedastic measurement error models. Rather than the normal distribution, we postulate a Student t distribution for the observed variables. Maximum likelihood estimates are computed numerically. Consistent estimation of the asymptotic covariance matrices of the maximum likelihood and generalized least squares estimators is also discussed. Three test statistics are proposed for testing hypotheses of interest with the asymptotic chi-square distribution which guarantees correct asymptotic significance levels. Results of simulations and an application to a real data set are also reported.
ISSN:1226-3192
2005-2863
DOI:10.1016/j.jkss.2009.09.003