Robust inference in an heteroscedastic measurement error model
In this paper we deal with robust inference in heteroscedastic measurement error models. Rather than the normal distribution, we postulate a Student t distribution for the observed variables. Maximum likelihood estimates are computed numerically. Consistent estimation of the asymptotic covariance ma...
Gespeichert in:
Veröffentlicht in: | Journal of the Korean Statistical Society 2010, 39(4), , pp.439-447 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we deal with robust inference in heteroscedastic measurement error models. Rather than the normal distribution, we postulate a Student
t distribution for the observed variables. Maximum likelihood estimates are computed numerically. Consistent estimation of the asymptotic covariance matrices of the maximum likelihood and generalized least squares estimators is also discussed. Three test statistics are proposed for testing hypotheses of interest with the asymptotic chi-square distribution which guarantees correct asymptotic significance levels. Results of simulations and an application to a real data set are also reported. |
---|---|
ISSN: | 1226-3192 2005-2863 |
DOI: | 10.1016/j.jkss.2009.09.003 |