Bayesian multiple structural change-points estimation in time series models with genetic algorithm
This article considers a time series model with a deterministic trend, in which multiple structural changes are explicitly taken into account, while the number and the location of change-points are unknown. We aim to figure out the best model with the appropriate number of change-points and a certai...
Gespeichert in:
Veröffentlicht in: | Journal of the Korean Statistical Society 2013, 42(4), , pp.459-468 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This article considers a time series model with a deterministic trend, in which multiple structural changes are explicitly taken into account, while the number and the location of change-points are unknown. We aim to figure out the best model with the appropriate number of change-points and a certain length of segments between points. We derive a posterior probability and then apply a genetic algorithm (GA) to calculate the posterior probabilities to locate the change-points. GA results in a powerful flexible tool which is shown to search over possible change-points. Numerical results obtained from simulation experiments show excellent empirical properties. To verify our model retrospectively, we estimate structural change-points with US and South Korean GDP data. |
---|---|
ISSN: | 1226-3192 2005-2863 |
DOI: | 10.1016/j.jkss.2013.02.001 |