Bayesian variable selection in quantile regression using the Savage–Dickey density ratio

In this paper we propose a Bayesian variable selection method in quantile regression based on the Savage–Dickey density ratio of Dickey (1976). The Bayes factor of a model containing a subset of variables against an encompassing model is given as the ratio of the marginal posterior and the marginal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Korean Statistical Society 2016, 45(3), , pp.466-476
Hauptverfasser: Oh, Man-Suk, Choi, Jungsoon, Park, Eun Sug
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we propose a Bayesian variable selection method in quantile regression based on the Savage–Dickey density ratio of Dickey (1976). The Bayes factor of a model containing a subset of variables against an encompassing model is given as the ratio of the marginal posterior and the marginal prior density of the corresponding subset of regression coefficients under the encompassing model. Posterior samples are generated from the encompassing model via a Gibbs sampling algorithm and the Bayes factors of all candidate models are computed simultaneously using one set of posterior samples from the encompassing model. The performance of the proposed method is investigated via simulation examples and real data sets.
ISSN:1226-3192
2005-2863
DOI:10.1016/j.jkss.2016.01.006