Robust direction identification and variable selection in high dimensional general single-index models

Direction estimation and variable selection in a general class of models with single-index structure are considered. Under mild condition, we show simple linear quantile regression can offer a consistent and asymptotical normal estimate for the direction of index parameter vector in the presence of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Korean Statistical Society 2015, 44(4), , pp.606-618
1. Verfasser: Wang, Kangning
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Direction estimation and variable selection in a general class of models with single-index structure are considered. Under mild condition, we show simple linear quantile regression can offer a consistent and asymptotical normal estimate for the direction of index parameter vector in the presence of diverging number of predictors, and it does not need to estimate the link function, and without error distribution constraint. To do variable selection, we penalize the simple linear quantile regression by SCAD, and the oracle property is established. Simulation results and real data analysis confirm our method.
ISSN:1226-3192
2005-2863
DOI:10.1016/j.jkss.2015.04.001