가중 합치도 Hω와 κ의 새로운 역설
For ordinal categorical $R{\times}R$ tables, a weighted measure of association, $H_{\omega}$, was proposed and its maximum likelihood estimator and asymptotic variance were drived. We redefined the last paradox of ${\kappa}$ and proved its relation to marginal distributions. We also introduced the n...
Gespeichert in:
Veröffentlicht in: | Ŭngyong tʻonggye yŏnʼgu 2009, 22(5), , pp.1073-1084 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | kor |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For ordinal categorical $R{\times}R$ tables, a weighted measure of association, $H_{\omega}$, was proposed and its maximum likelihood estimator and asymptotic variance were drived. We redefined the last paradox of ${\kappa}$ and proved its relation to marginal distributions. We also introduced the new paradox of ${\kappa}$ and summaried the general relationships between ${\kappa}$ and marginal distributions. 두 평정자가 R개의 순서형 반응 범주로 각 개체를 분류한 $R{\times}R$ 분할표에 대해, 불합치의 정도를 가중치로 부여한 가중 합치도 $H_{\omega}$를 제안하고, 최대 우도추정량 및 분산을 유도하였다. 또한 $2{\times}2$ 분할표에서 Feinstein과 Cicchetti(1990)가 제기한 마지막 역설을 새롭게 정의하고 증명하였으며, ${\kappa}$의 새로운 역설을 제기하고, ${\kappa}$와 주변분포의 전반적인 관계를 정리하였다. |
---|---|
ISSN: | 1225-066X 2383-5818 |