가중 합치도 Hω와 κ의 새로운 역설

For ordinal categorical $R{\times}R$ tables, a weighted measure of association, $H_{\omega}$, was proposed and its maximum likelihood estimator and asymptotic variance were drived. We redefined the last paradox of ${\kappa}$ and proved its relation to marginal distributions. We also introduced the n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ŭngyong tʻonggye yŏnʼgu 2009, 22(5), , pp.1073-1084
Hauptverfasser: 권나영, Na Young Kwon, 김진곤, Jin Gon Kim, 박용규, Yong Gyu Park
Format: Artikel
Sprache:kor
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For ordinal categorical $R{\times}R$ tables, a weighted measure of association, $H_{\omega}$, was proposed and its maximum likelihood estimator and asymptotic variance were drived. We redefined the last paradox of ${\kappa}$ and proved its relation to marginal distributions. We also introduced the new paradox of ${\kappa}$ and summaried the general relationships between ${\kappa}$ and marginal distributions. 두 평정자가 R개의 순서형 반응 범주로 각 개체를 분류한 $R{\times}R$ 분할표에 대해, 불합치의 정도를 가중치로 부여한 가중 합치도 $H_{\omega}$를 제안하고, 최대 우도추정량 및 분산을 유도하였다. 또한 $2{\times}2$ 분할표에서 Feinstein과 Cicchetti(1990)가 제기한 마지막 역설을 새롭게 정의하고 증명하였으며, ${\kappa}$의 새로운 역설을 제기하고, ${\kappa}$와 주변분포의 전반적인 관계를 정리하였다.
ISSN:1225-066X
2383-5818