이분산 상황 하에서 정규혼합모형 기반 군집분석의 변수선택

관측치의 개수보다 변량의 개수가 더 많은 다변수 상황에서 정규혼합모형을 이용하여 군집분석을 하기 위해서는 비정보적인 변수들을 제거하는 과정이 필수적으로 요구된다. 이와 같은 변수선택과 군집의 동시 처리를 위한 기존 연구의 대부분은 군집별 등분산 가정 하에서 이루어져 왔으며, 비정보적인 변수를 제거하기 위해 주로 벌점화 우도 기법이 이용되었다. 본 연구에서는 약간 변형된 정규혼합모형을 기반으로 비현실적인 등분산 가정을 탈피하면서 효율적으로 비정보적인 변수를 제거하는 새로운 방법을 제공한다. 이 모형에 대한 타당성을 설명하였고, 모수...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ŭngyong tʻonggye yŏnʼgu 2011, 24(6), , pp.1213-1224
Hauptverfasser: 김승구, Seung Gu Kim
Format: Artikel
Sprache:kor
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:관측치의 개수보다 변량의 개수가 더 많은 다변수 상황에서 정규혼합모형을 이용하여 군집분석을 하기 위해서는 비정보적인 변수들을 제거하는 과정이 필수적으로 요구된다. 이와 같은 변수선택과 군집의 동시 처리를 위한 기존 연구의 대부분은 군집별 등분산 가정 하에서 이루어져 왔으며, 비정보적인 변수를 제거하기 위해 주로 벌점화 우도 기법이 이용되었다. 본 연구에서는 약간 변형된 정규혼합모형을 기반으로 비현실적인 등분산 가정을 탈피하면서 효율적으로 비정보적인 변수를 제거하는 새로운 방법을 제공한다. 이 모형에 대한 타당성을 설명하였고, 모수 추정을 위한 EM 알고리즘을 유도하였다. 그리고 모의실험 및 실자료 실험을 통해 제안된 방법의 유효성을 보였다. In high dimensionality where the number of variables are excessively larger than observations, it is required to remove the noninformative variables to cluster observations. Most model-based approaches for variable selection have been considered under the assumption of homoscedasticity and their models are mainly estimated by a penalized likelihood method. In this paper, a different approach is proposed to remove the noninformative variables effectively and to cluster based on the modified normal mixture model simultaneously. The validity of the model was provided and an EM algorithm was derived to estimate the parameters. Simulation studies and an experiment using real microarray dataset showed the effectiveness of the proposed method.
ISSN:1225-066X
2383-5818