시공간 상관성을 고려한 일기산출기 모형을 이용한 4대강 유역별 미래 일기 변수 산출
일기 산출기 모형은 가상의 일기 자료를 생성하는 통계 모형이다. 본 연구는 시공간 상관성이 고려된 다중지점에서 의 일기산출 모형을 제안하고, 온실가스 배출 미래 시나리오에 따라 강수량과 평균 기온 일기산출이 가능한 알고리즘을 개발하였다. 제안된 알고리즘은 다단계 일반화 선형모형 하에서 필요한 모수들을 추정하고, 적합된 모형 하에서 일기변수들을 랜덤하게 산출하는 절차이다. 과거 30년간 관측된 우리나라 4대강 유역의 일 강수량 자료와 평균 기온 자료를 가지고 모형을 적합하고, 미래 일별 일기자료 산출에 적용하였다. Weather ge...
Gespeichert in:
Veröffentlicht in: | Ŭngyong tʻonggye yŏnʼgu 2012, 25(2), , pp.351-362 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | kor |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | 일기 산출기 모형은 가상의 일기 자료를 생성하는 통계 모형이다. 본 연구는 시공간 상관성이 고려된 다중지점에서 의 일기산출 모형을 제안하고, 온실가스 배출 미래 시나리오에 따라 강수량과 평균 기온 일기산출이 가능한 알고리즘을 개발하였다. 제안된 알고리즘은 다단계 일반화 선형모형 하에서 필요한 모수들을 추정하고, 적합된 모형 하에서 일기변수들을 랜덤하게 산출하는 절차이다. 과거 30년간 관측된 우리나라 4대강 유역의 일 강수량 자료와 평균 기온 자료를 가지고 모형을 적합하고, 미래 일별 일기자료 산출에 적용하였다.
Weather generators are statistical tools to produce synthetic sequences of daily weather variables. We propose the multisite weather generators with a spatio-temporal correlation based on hierarchical generalized linear models. We develop a computational algorithm to produce future weather variables that use three different types of green-house gases scenarios. We apply the proposed method to a daily time series of precipitation and average temperature for South Korea. |
---|---|
ISSN: | 1225-066X 2383-5818 |