A Study of HME Model in Time-Course Microarray Data
For statistical microarray data analysis, clustering analysis is a useful exploratory technique and offers the promise of simultaneously studying the variation of many genes. However, most of the proposed clustering methods are not rigorously solved for a time-course microarray data cluster and for...
Gespeichert in:
Veröffentlicht in: | Ŭngyong tʻonggye yŏnʼgu 2012, 25(3), , pp.415-422 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | kor |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For statistical microarray data analysis, clustering analysis is a useful exploratory technique and offers the promise of simultaneously studying the variation of many genes. However, most of the proposed clustering methods are not rigorously solved for a time-course microarray data cluster and for a fitting time covariate; therefore, a statistical method is needed to form a cluster and represent a linear trend of each cluster for each gene. In this research, we developed a modified hierarchical mixture of an experts model to suggest clustering data and characterize each cluster using a linear mixed effect model. The feasibility of the proposed method is illustrated by an application to the human fibroblast data suggested by Iyer et al. (1999). |
---|---|
ISSN: | 1225-066X 2383-5818 |
DOI: | 10.5351/KJAS.2012.25.3.415 |